Complete remission of alopecia universalis after allogeneic hematopoietic stem cell transplantation
Bettina Seifert, Jakob R. Passweg, Dominik Heim, Alicia Rovó, Sandrine Meyer-Monard, Stanislaus Buechner, Andre Tichelli, and Alois Gratwohl
From the stem cell transplant team, Hematology Division, Department of Internal Medicine, and Division of Dermatology, Basel University Hospitals, Switzerland.

Abstract
This case report is on a 40-year-old male patient with chronic myeloid leukemia (CML) receiving an allogeneic hematopoietic stem cell transplantation (HSCT) in first chronic phase from an HLA-identical sibling brother. He suffered from alopecia universalis occurring 11 years previously. The alopecia involved all body hair, including eyebrows and eyelashes. Between day 40 and day 55 after transplantation, hair started to grow on the chin, eyelashes, and on the top of his head. Immunosuppression was stopped at 6 months because of cytogenetic relapse and incomplete donor chimerism with some renewed hair loss. He returned to full donor chimerism with mild chronic graft-versus-host disease and continued hair growth. With 2 years of follow-up he has remained in continuous remission. Chimerism analyses of hair follicles did not show any donor alleles. Alopecia universalis is probably a chronic autoimmune disorder, curable with replacement of the immune system with an allogeneic HSCT. (Blood. 2005;105:426-427)

Introduction
Alopecia universalis is defined as nonscarring loss of all body hair, characterized by sudden onset independent of age and sex. The cause is unknown. Genetic, environmental, and individual etiologic factors are discussed. Its association with other autoimmune disorders renders an autoimmune pathogenesis very likely, the targeted antigen being private to the hair follicle. Histology is characterized by peribulbar lymphocyte or eosinophilic infiltration. There is no established treatment, and hair loss is usually definitive. We present a case of alopecia universalis of 12 years' duration, with hair growth after allogeneic hematopoietic stem cell transplantation (HSCT) for leukemia.

Case report
A 40-year-old patient was referred for hematopoietic stem cell transplantation from his HLA-identical brother to treat BCR/ABL-positive chronic myeloid leukemia (CML) in chronic phase, diagnosed 5 months previously. Bone marrow was hypercellular without signs of acceleration. Initial treatment was with hydroxyurea.

The patient's history revealed total body hair loss, including eyebrows and eyelashes, occurring suddenly 12 years previously (Figure 1), diagnosed as alopecia universalis. At that time he was healthy, denied exposures to toxins, and ascribed alopecia to stress associated with his mother being ill. The family history was negative for autoimmune disease and leukemia. He was positive for the alopecia universalis-associated HLA class II antigen DQB1*0301.

View larger version
In this window
In a new window
Figure 1. Hair growth. The left panel shows hair growth prior to the patient having been diagnosed with CML; the right panel shows hair growth 3 months after HSCT. Hair growth after transplantation includes the top of the head, as well as the beard and eyebrows.
He underwent conditioning with 120 mg/kg cyclophosphamide and 12 Gy fractionated total body irradiation and received a non-T-cell-depleted allogeneic peripheral blood stem cell graft (6.29 x 106 CD34 cells per kilogram) from his HLA-identical brother. Graft-versus-host disease (GvHD) prophylaxis was with cyclosporine and short-course methotrexate. The early posttransplantation course was uneventful; he engrafted with more than 0.5 x 109/L neutrophils on day +21, and there were no infectious complications and no signs of GvHD. On day +100 after transplantation he was in good health with normal blood counts; the leukemia was in complete hematologic and cytogenetic remission, and chimerism studies showed the blood cells to be of 100% donor origin.

Remarkably, on day +40 hair started to grow on his upper lip and chin. Eyebrows and eyelashes grew back. On day +55 hair started to grow on the top of his head and on day +80 hair grew on his chest (Figure 1). Chimerism studies of hair follicles showed them to be completely of recipient origin.

Briefly, 50 hairs including follicles were pulled in sterile conditions from the scalp using phosphate-buffered saline (PBS)-rinsed forceps and collected in a 50 mL Falcon tube, according to the methodology of the Institute for Legal Medicine. DNA was extracted with the QIAamp DNA Micro Kit (Qiagen, Hilden, Germany). For the amplification with a multiplex short tandem repeat (STR) polymerase chain reaction (PCR), the AmpFlSTR Profiler (Applied Biosystems, Weiterstadt, Germany) STR multiplex PCR amplification kit, amplifying 9 different STR loci and the Amelogenin locus, discriminating X and Y chromosomes, was used. PCR fragments were separated by capillary electrophoresis on an ABI Prism 310 Genetic Analyzer (Applied Biosystems). Fragment size and peaks were analyzed using the Genescan Analysis Software (Applied Biosystems). Informative peaks (ie, loci different in recipient and donor) were used for calculation of the donor proportion.1 Sensitivity for detecting a minor population of alleles is 1% to 3% in peripheral blood and 1 of 50 hairs.

On day +180 a cytogenetic relapse was diagnosed with mixed hematopoietic chimerism. Some of the hair that had grown back started to fall out again. Histology of a scalp biopsy showed sparse peribulbar lymphocytic infiltrates. Immunosuppression with cyclosporine was stopped, and he was started on imatinib. He developed mild biopsy-proven chronic GvHD limited to the liver (elevated liver function tests [LFTs]), spontaneously regressing without specific treatment. He returned to full donor chimerism and BCR/ABL negativity. Imatinib was stopped 2 years after transplantation. He remains in complete hematologic, cytogenetic, and molecular remission with full donor hematopoietic chimerism and with a scalp of hair as shown in Figure 1. Repeated chimerism analyses of his hair follicles did not show any donor alleles.

Discussion
This case demonstrates that long-lasting alopecia universalis may recover completely after allogeneic HSCT. This supports the concept of an autoimmune pathogenesis of alopecia universalis. Intense immunosuppression combined with replacement of the immune system by donor cells can induce regrowth of body hair. Long-lasting alopecia universalis is considered to be irreversible, and there is no established treatment. Alopecia areata and, more rarely, alopecia universalis may respond to immunosuppressive or immunomodulatory treatment, but no confirmed treatment exists. This case report, supplemented by similar findings in a case after autologous HSCT,2 implies that the pattern of hair loss in alopecia universalis must be due to reversible inhibition of hair growth without complete destruction of hair follicles.

The antigen in alopecia universalis is not defined, and it is currently unknown to what degree cellular and/or humoral immunity against hair follicle antigens are involved. The association of alopecia universalis with other types of autoimmune disease, the identification of hair follicle-specific autoantibodies in animal models, the ability to induce alopecia in an animal model by transfer of skin from affected to naive individuals, the induction of disease by transfer of lymphocytes to human skin grafted to severe combined immunodeficiency (SCID) mice, and inhibiting hair loss by removal of T lymphocytes or treatment with antibodies restricting mobility of CD8+ cells all suggest that alopecia universalis is a tissue-restricted autoimmune disease.3-7 The association of alopecia universalis with human leukocyte antigens (HLAs), specifically with DRB1*0401 and DQB1*0301, has been described.8 The multifactorial nature of this disease, with genetic predisposition representing just one aspect, is made evident by the absence of alopecia in the patient's brother, who shares the same HLA haplotypes.

We performed chimerism studies of hair follicles because of the possibility of pluripotent stem cells from the donor contributing to hair growth in the recipient. Interest has been stimulated by reports of donor cell microchimerism in liver and gut biopsies of allogeneic stem cell transplant recipients.9 We found no evidence of donor origin in the hair follicles examined.10 The PCR approach used is possibly sensitive to contamination by blood cells. We have minimized these risks by careful washing. Contamination can be excluded in this case by the fact that we found no donor alleles in the hair analyzed.

The mechanism of response is unknown. The conditioning regimen is highly immunosuppressive and might have induced a remission of alopecia universalis in its own right. Replacing the recipient's immune system by the allogeneic graft might restore normal lymphocyte ontogeny. Posttransplantation immunosuppressive therapy with cyclosporine might also contribute. The early reappearance of alopecia during a phase of transient mixed chimerism and the stability of response over 2 years after establishing full donor chimerism favors a concept of eradication of autoreactive cells. This observation is in line with other reports of response to immunosuppressive therapy.11-13

HSCT is currently under investigation as a treatment for severe autoimmune disease. Allogeneic and, more frequently, autologous HSCT is used. Durable responses have been reported in patients receiving allogeneic and autologous HSCT. These observations as well as this case report all suggest the possibility of treating autoimmune diseases by eradication of autoreactive cells. This possibly could be achieved via high-dose immunoablation or a graft-versus-host immunity effect.13-17

In conclusion, complete recovery of alopecia universalis after allogeneic HSCT adds evidence to the autoimmune disease hypothesis of alopecia. Moreover, this case shows alopecia universalis to be a reversible condition.

Footnotes
Submitted January 15, 2004; accepted March 26, 2004.

Prepublished online as Blood First Edition Paper, April 8, 2004; DOI 10.1182/blood-2004-01-0136.

Supported in part by the Swiss National Research Foundation grant NF 32-52756.97 and the Horten Foundation.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked "advertisement" in accordance with 18 U.S.C. section 1734.

Reprints: Jakob R. Passweg, Hematology Division, Kantonsspital Basel, Petersgraben 4, CH-4031, Basel, Switzerland; e-mail: jakob.passweg@unibas.ch.

References
Thiede C, Florek M, Bornhauser M, et al. Rapid quantification of mixed chimerism using multiplex amplification of short tandem repeat markers and fluorescence detection. Bone Marrow Transplant. 1999;23: 1055-1060.[CrossRef][Medline] [Order article via Infotrieve]

Feher O, Sant'Ana RO, Valadares AD, Anelli A. Alopecia universalis completely resolved following autologous bone marrow transplantation. Arch Dermatol. 2002;138: 1102-1103.[Free Full Text]

McElwee KJ, Tobin DJ, Bystryn JC, King LE Jr, Sundberg JP. Alopecia areata: an autoimmune disease. Exp Dermatol. 1999;8: 371-379.[Medline] [Order article via Infotrieve]

Hoffmann R, Eicheler W, Huth A, Wenzel E, Happle R. Cytokines and growth factors influence hair growth in vitro: possible implications for the pathogenesis and treatment of alopecia areata. Arch Dermatol Res. 1996;288: 153-156.[Medline] [Order article via Infotrieve]

Majewski BB, Koh MS, Taylor DR, Watson B, Rhodes EL. Increased ratio of helper to suppressor T cells in alopecia areata. Br J Dermatol. 1984;110: 171-175.[CrossRef][Medline] [Order article via Infotrieve]

Randall VA. Is alopecia areata an autoimmune disease? Lancet. 2001;358: 1922-1924.[CrossRef][Medline] [Order article via Infotrieve]

Gilhar A, Shalaginov R, Assy B, Serafimovich S, Kalis RC. Alopecia areata is a T-lymphocyte mediated autoimmune disease: lesional human T-lymphocytes transfer alopecia areata to human skin grafts on SCID mice. J Invest Dermatol. 1999;4: 207-210.

Colombe BW, Lou CD, Price VH. The genetic basis of alopecia areata: HLA associations with patchy alopecia areata versus alopecia totalis and alopecia universalis. J Investig Dermatol Symp Proc. 1999;4: 216-219.[Medline] [Order article via Infotrieve]

Körbling M, Katz RL, Khanna A, et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med. 2002;346: 738-746.[CrossRef][Medline] [Order article via Infotrieve]

Rovo A, De Geyter C, Meyer-Monard S, et al. Quest for donor type cells in non-hematopoietic tissue in patients after HSCT: analysis of tissue with high need for repair: hair and sperm [abstract]. Blood. 2003: 102.

Teshima H, Urabe A, Irie M, Nakayama T. Alopecia universalis treated with oral cyclosporine A and prednisolone: immunologic studies. Int J Dermatol. 1992;31: 513-516.[Medline] [Order article via Infotrieve]

Rodriguez R, Subbotin VM, Selby RR, Thomson AW. Rapid hair regrowth in refractory alopecia universalis associated with autoimmune disease following liver transplantation and tacrolimus (FK 506) therapy. Transplantation. 1995;59: 1350-1353.[Medline] [Order article via Infotrieve]

Views: 166

Comment by MilP on March 4, 2012 at 7:07am
That's interessent , i still don't get how they couldn't make a relation with all the signs shown in differents experiments.

There it is we finally got a COMPLETE REMISSION, but nobody seems to study that, and this came out in 2004.
Comment by Disaster on March 5, 2012 at 3:21am

am very upset because there was lot found and all keep quiet am in this thing 6 years and cant say is not contagious even, and all say that well not true if a skin tissue from alopecia mice is add on normal mice guess what he gets alopecia to how can they say that cant spread?There is the prove if is genes wont be spread to the other mice oh and yes am the second prove my ex gf had AU year after we broke up i got very weird skin problems computer was making my skin itch burn rashes than alopecia in 4 years from my brake up all this happen i know is from her because before i had no problem at all staring the comp and no skin problem and after her i had no other gf anyway am photosensitive out of no where, and a lot say that is from retrovirus a lot things i found show AA,AT,AU is caused from retrovirus and that the retrovirus only causes this in people that have genetic predisposition of hair loss but this don't change the fact THAT CAN SPREAD and from natural hair loss you will go from 10 age TOTAL hair loss or when older depending when you got the virus what is worse i ruined my now gf life because i started to believe doctors telling me is no way to be contagious.She started having same symptoms as i did she cant be in front comp awesome now i need to tell her that is from me and she to prepare her self for the worse and this retrovirus makes a lot problems not just au can make a lot autoimmune disorders ppl need to start listening ang test them selves for all retroviruses some can be in your body quietly even if you got it 300 years a go it will spread try generations as like bad genes but is not is a virus that never got cured and that the body never fight it off that is why most AU runs in family i am telling this all the time and ppl make me crazy that am not right, so this is my last post has been very hard to dig up this info and post it here even some of my blogs were not allowed but they have seen am right because i showed the facts everything i mentioned here is try facts and proves in my other blogs.Note to all that will read this:Don't wait on doctors go get tested for all retroviruses, herpes viruses one more thing HIAP a type retrovirus was found in 95% in AU,AA,AT people in 1986 even and in cancers i cant talk for hiap because still idk what it is if is condations or whatever

Comment by Disaster on March 5, 2012 at 3:30am

contagious* or whatever way too tired cant type normal..Thanks to all that read my posts i hope i have helped and some that take my advice and don't think this type is not curable it is only needs to be found how all that enters the body can go away the same way it enter it here is just one prove how.

Comment

You need to be a member of Alopecia World to add comments!

Join Alopecia World

Disclaimer

Any mention of products and services on Alopecia World is for informational purposes only; it does not imply a recommendation or endorsement by Alopecia World. Nor should any statement or representation on this site be construed as professional, medical or expert advice, or as pre-screened or endorsed by Alopecia World. Alopecia World is not responsible or liable for any of the views, opinions or conduct, online or offline, of any user or member of Alopecia World.

© 2024   Created by Alopecia World.   Powered by

Badges  |  Report an Issue  |  Terms of Service